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Attending to a specific spatial location modulates responsivity of neurons with receptive fields processing that part of the environment.
A major outstanding question is whether attentional modulation operates differently for the foveal (central) representation of the visual
field than it does for the periphery. Indeed, recent animal electrophysiological recordings suggest that attention differentially affects
spatial integration for central and peripheral receptive fields in primary visual cortex. In human electroencephalographic recordings,
spatial attention to peripheral locations robustly modulates activity in early visual regions, but it has been claimed that this mechanism
does not operate in foveal vision. Here, however, we show clear early attentional modulation of foveal stimulation with the same timing
and cortical sources as seen for peripheral stimuli, demonstrating that attentional gain control operates similarly across the entire field
of view. These results imply that covertly attending away from the center of gaze, which is a common paradigm in behavioral and
electrophysiological studies of attention, results in a precisely timed push–pull mechanism. While the amplitude of the initial response to
stimulation at attended peripheral locations is significantly increased beginning at 80 ms, the amplitude of the response to foveal
stimulation begins to be attenuated.

Introduction
The foveal representation of visual space in early visual cortex
differs from the representation of the periphery in terms of con-
trast sensitivity, receptive field sizes, and response dynamics.
There is evidence for feedback from higher cortical areas into
foveal visual cortex for objects presented in the periphery
(Williams et al., 2008). A recent animal electrophysiology study
showed that attention reduces spatial integration for cells with cen-
trally located receptive fields, while increasing spatial integration for
cells with peripheral fields (Roberts et al., 2007). However, it is un-
clear how attention modulates processing of central visual input in
humans. A number of functional magnetic resonance imaging
(fMRI) studies (Paus et al., 1995; Tootell et al., 1998; Brefczynski and
DeYoe, 1999; Somers et al., 1999) showed attentional modulation of
the blood oxygenation level-dependent (BOLD) response for cen-
trally presented inputs within early visual areas, but from these stud-
ies it is not clear when this attentional modulation occurs.

In contrast to fMRI, electroencephalography (EEG) has a very
good time resolution and therefore lends itself to answer this
question. In EEG recordings, spatial attention to peripheral loca-
tions modulates sensory processing in hierarchically early visual
cortex (e.g., Hillyard and Anllo-Vento, 1998; Kelly et al., 2008).

This effect can be described in terms of sensory gain control.
According to this view, spatial attention enhances or reduces
neural responses in sensory areas without changing their timing.
The generators of gain-modulated responses to peripheral stim-
uli are well documented (Heinze et al., 1994; Woldorff et al.,
1997; Martínez et al., 1999). Two recent event-related potential
(ERP) studies (Eimer, 2000; Handy and Khoe, 2005) indicated
that, unlike for peripheral stimuli, there is no attentional gain
control for visual stimuli presented in the fovea. Paradoxically, in
one of these studies (Handy and Khoe, 2005), consistent cueing
effects were found on reaction time to both locations, foveal and
parafoveal, providing behavioral evidence that attentional selec-
tion must have occurred at some level. The ERP technique, how-
ever, is only one way of obtaining the brain’s impulse response
function to a given (attended) stimulus. Another is the VESPA
technique (Lalor et al., 2006), in which the intensity (or poten-
tially any property) of a stimulus is modulated on each monitor
refresh. With this technique, visual evoked responses can be esti-
mated from continuously present stimulation streams, thereby
removing the need for flashing stimuli. Therefore we are able to
assess the effects of allocating attention among simultaneously
presented stimuli in the absence of bottom-up capture effects of
sudden stimulus onsets necessitated by the ERP technique (Lalor
et al., 2007). In addition, the VESPA stimuli better approximate
real environmental circumstances where objects seldom (if ever)
flash on and off repeatedly. Using these stimuli, we expected to
find early attentional modulation of foveal inputs.

Materials and Methods
Subjects. Eighteen healthy volunteers (11 female) participated in this
study, which was approved by the Institutional Review Board of the City
College of New York. All subjects gave written informed consent to par-
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ticipate in this study and received a modest fee. All had normal or cor-
rected to normal vision.

Stimuli and procedure. A stimulus consisted of four rectangles ar-
ranged in the quadrants of a 1.8 � 1.8° fixation cross (Fig. 1). During
every 5 s trial, the luminance of these four rectangles was modulated on
each monitor refresh (60 Hz) between 0.1 and 118 cd/m 2 using a Gauss-
ian random process with �3 SDs spanning the luminance range (Lalor et
al., 2006). One of these stimuli was located at the center of the monitor
and the other 2.2° above. Since the stochastic waveforms modulating the
two stimuli were completely uncorrelated, we could estimate the brain’s
impulse response function to each individual stimulus concurrently. For
a block of 20 trials subjects continuously fixated on one of these stimuli.
Between 800 and 1200 ms before each trial, an arrow cue (height 0.5°,
presented 0.75° from center of fixation) indicated to which stimulus
subjects had to attend. Therefore subjects either had to attend to the
fixated or covertly attend to the nonfixated stimulus. The task consisted
of detecting up to three targets in the luminance modulation of the
precued stimulus and to ignore the uncued stimulus. We continuously
adjusted the detectability of targets by changing their duration to keep
subjects at performance levels of �60% correct responses using an up-
down transformed rule.

Recording. We recorded 168 EEG channels using a ActiveTwo (Bio-
Semi) system sampled at 512 Hz, while at the same time tracking the
subjects’ eyes with an EyeLink 2K system (resolution 0.01°; SR Research)
running at 500 Hz.

Eye-tracking analysis. We filtered the raw eye-tracking data using a low
pass of 15 Hz to eliminate high-frequency errors. On this filtered data, we
removed all trials in which the subjects’ eyes moved �1° from center of
fixation. This procedure also detected all trials with eyeblinks. Such a
strict criterion is necessary, since the VESPA technique has allowed us
here to present two continuous stimuli concurrently. Thus, if there were
eye movements during a trial, the calculation of the response to the

fixated location would include periods where participants were fixating
the surround or even the other stimulus. We aborted the experiment of
one participant who had very large eye movements in every trial, detect-
able by visual inspection during recording. For analysis of eye-tracking
and EEG data, we removed the first 500 ms of each trial. Doing so re-
moved regions with small eye movements at the onset of the stimuli.
Only trials in which subjects’ eyes were stable were used for further EEG
analysis. Subjects who had less than an average of 100 trials remaining for
each condition after this eye-movement rejection step were excluded
from further analysis. This left us with 12 subjects.

EEG analysis. The recorded EEG data were referenced offline to the
nasion and filtered between 1 and 40 Hz using Butterworth filters. We
then calculated the two VESPAs, i.e., the impulse response functions
using the two known monitor luminance signals and the measured EEG
signal for each channel using linear least-squares estimation. As in pre-
vious studies, this was done using a 500 ms sliding window (Lalor et al.,
2006). It is important to note that the meaning of this time interval is
slightly different from the time intervals over which VEPs are typically
plotted. Unlike the VEP, the VESPA time interval is not determined with
relation to a specific discrete event occurring at time 0. Instead, each time
point on the time axis can be interpreted as being the relative time be-
tween the continuous EEG and the continuous input intensity signal.
Therefore, the VESPA at �100 ms, for example, indexes the relationship
between the input intensity signal at any time point and the EEG 100 ms
earlier; obviously this should be zero. As another example, the VESPA at
�100 ms indexes how the input intensity signal at any time point affects
the EEG 100 ms later.

Dipolar sources of brain activity were estimated using a four-shell
ellipsoidal head model as implemented in BESA (Megis Software; version
5.1.8). The software fits ellipsoidal compartments for brain, CSF, bone,
and skin to the electrode locations. This method assumes that there are a
limited and distinct number of active brain regions over the evoked
potential epoch, each of which can be approximated by an equivalent
dipole. Dipole generators are placed within the ellipsoidal volume con-
ductor model and overlaid on and adjusted to a segmented structural
MRI (in this case, an averaged brain). The forward solution to this dipole
configuration is tested against the observed experimental data. When not
fixed, the positions and orientations of the dipoles are iteratively adjusted
to minimize the residual variance between the forward solution and the
observed data (Scherg and Picton, 1991; Scherg and Berg, 1996). We used
the difference wave between the two attention conditions to localize the
P1 attention effect. For the lower fixation spot the time range for estima-
tion was 70 –90 ms, while for the upper fixation spot it was 66 – 86 ms. A
pair of dipoles constrained to be mirror-symmetrical in location but
allowed to vary in orientation was fitted. The initial starting position of
dipoles was randomly chosen and the solution was restarted form mul-
tiple starting positions to ensure stability.

Statistical analysis. The VESPA method produces one impulse re-
sponse function for each experimental subject. To assess the significance
of differences in VESPA amplitude around the P1 component, we there-
fore applied a statistical test across subjects. For each subject, we normal-
ized the VESPA for the selected electrodes and determined the mean
amplitude within the P1 timeframe. The mean amplitudes for attended
and unattended conditions were then compared using the nonparamet-
ric Kolmogorov–Smirnov test. Please note that comparisons were always
done for the fixated stimulus and that the only difference on any com-
parison was whether or not the stimulus was attended or unattended.

Results
Behavioral results
Participants maintained fixation on one of two identical but in-
dependently modulated stimuli arranged one above the other
(Fig. 1) and were required to detect momentary luminance diver-
gences in either the fixated or peripheral stimulus, according to a
precue (for an example video, see supplemental material, avail-
able at www.jneurosci.org). We continuously adjusted target du-
ration to keep subjects’ performance stable at �60%. Subjects
initially improved in detecting targets and then maintained stable

Figure 1. Stimuli and task. a, Throughout an experimental block, participants fixated on the
center of one of two stimuli. Before every trial, an arrow indicated which stimulus the partici-
pants had to attend to, either the fixated or the parafoveal stimulus. b, During a 5 s trial, the
luminance of each stimulus was changed by its own stochastic waveform on each monitor
refresh. The participants performed a difficult task on the attended stimulus and ignored the
unattended one. Normally the luminance of all four quadrants in each stimulus modulated with
an identical time course. The task consisted of counting the number of times one of the four
quadrants of the attended stimulus momentarily diverged in luminance from the other three.
We present six example frames with a target in the upper right quadrant of the upper stimulus
of frame n.
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levels for several blocks (supplemental Fig. 1, available at www.
jneurosci.org as supplemental material). In the later blocks per-
formance tended to decline, and thus, target duration usually
increased back toward the starting level. This pattern of target
durations indicates that participants were able to perform the
task and remained engaged in it throughout.

Temporal properties of attentional modulation
The VESPA technique derives the brain’s impulse response func-
tion from the recorded EEG response and the known stimulus
brightness waveform. Analyzing the influence of attending away
from the fixation point, we do not find an attentional modulation
in the time frame of the C1 component of the classical VEP (all
p � 0.18). However there is a significant attention-dependent
modulation of the VESPA for foveal stimuli between 80 and 100

ms after stimulus at the average of four central occipital elec-
trodes ( p � 0.019, n � 12) (Fig. 2a,b). This modulation of the
VESPA is present for both possible fixation locations and occurs
in the time range of the P1 component of the classical ERP. Our
results clearly demonstrate that spatial attention modulates vi-
sual processing of foveal stimuli in the same time range found for
peripheral stimuli.

Cortical sources of attentional modulation
To further investigate the nature of this attentional modulation,
we estimated the location of its cortical generators using equiva-
lent dipole models. If the attentional modulation for foveal stim-
uli is governed by the same mechanisms as for peripheral stimuli,
then the sources should be in comparable regions of extrastriate
cortex. Indeed, localizing the peak of the difference between at-
tended and unattended foveal stimuli revealed sources in extra-
striate cortex, spatially close to sources previously described for
attentional modulation for peripheral stimuli (Heinze et al.,
1994; Woldorff et al., 1997; Martínez et al., 1999). For the lower
fixation location, we localized the peak of the difference wave
between 70 and 90 ms to the middle occipital gyrus (Fig. 3)
(Talairach coordinates: x: �35, y: �80, z: 4; explained variance:
77%). We find sources more ventral and medial (Talairach coor-
dinates: x: �19, y: �78, z: �5; explained variance 92%) for the
difference wave of the upper stimulus between 66 and 86 ms
(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material). These differences in location of cortical sources
between upper and lower visual field are in agreement with earlier
results (Heinze et al., 1994; Woldorff et al., 1997). As for the
temporal profile of activation, the cortical sources of the atten-
tional modulation for foveal visual stimuli are comparable to the
sources for peripheral stimuli.

Figure 2. Temporal properties of attentional modulation. a, Modulation of grand average
VESPA at central occipital electrodes with attention when subjects fixated on the upper visual
stimulus. b, Map of voltage differences between attended and unattended foveal stimuli at 86
ms after stimulus onset. The black ellipse encircles the central occipital electrodes used in a and
c, as well as for the statistical comparison. c, Modulation of grand average VESPA at central
occipital electrodes with attention when subjects fixated on the lower visual stimulus.

Figure 3. Dipole representations of sources of attentional modulation for fixation on lower
stimulus. a, c, Transversal sections at z � 2. b, Coronal section at y � �80. d, Sagittal section
at x � �35.
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Discussion
Implications for covert attention
Covertly attending away from the center of gaze is one of the most
commonly used techniques to study attentional modulation in
behavioral and electrophysiological experiments. In behavioral
attentional studies, participants are cued to covertly attend one of
several possible locations at which a target might show up. There
are numerous reports of reduced reaction times (e.g., Posner,
1980) and lower perceptual thresholds (e.g., Bashinski and
Bacharach, 1980) to covertly attended stimuli, when the cue is
valid compared to invalid cues. Electroencephalographic studies
consistently show an enhancement of the visual evoked potential
to covertly attended peripheral stimulation beginning at �80 ms
(e.g., Heinze et al., 1994; Woldorff et al., 1997; Hillyard and
Anllo-Vento, 1998). Our finding that processing resources begin
to be withdrawn from foveal inputs at the same time as the en-
hancement of peripheral inputs starts, suggests that there is a
coupling between these two processes. That is, our data point to a
precisely timed push–pull mechanism of spatial visual attention.

Methodological innovation
The discrepant results between our study and earlier ERP studies
(Eimer, 2000; Handy and Khoe, 2005) is very likely attributable to
the nature of the stimuli. In those studies, isolated suddenly on-
setting stimuli were used. It is well known, however, that such
sharply onsetting, flashed stimuli automatically attract attention
and thereby may override or weaken the effect of endogenous
attention. The VESPA technique, in contrast, minimizes the in-
volvement of exogenous attention for two reasons. First, the
stimuli are continuously present and subjects consistently attend
to the cued stimulus to carry out the experimental task. Second,
the onset and duration (in this case 5 s) of luminance modulation
is the same for both cued and uncued stimuli, which are displayed
simultaneously. As such, these stimuli are considerably less likely
to interfere with the subjects’ endogenous deployment of atten-
tion [see Lalor et al. (2007) for a discussion of the use of the
VESPA for assessing purely endogenous attention]. In addition,
the VESPA better approximates real environmental circum-
stances where objects seldom (if ever) flash on and off repeatedly.

Attentional modulation in primary visual cortex
No significant attentional modulation of the C1 component was
found, which peaked at �65 ms in the current data. This compo-
nent is thought to mainly reflect activity in primary visual cortex
(V1) (Clark et al., 1995; Foxe and Simpson, 2002; Kelly et al.,
2008). Therefore one could assume that attentional modulation
of centrally presented visual input does not occur during initial
afference of V1. However, it is important to point out that this
study was not explicitly designed to test this issue and there are
several plausible alternate explanations for the lack of attentional
modulation in this time range. There is a substantial intersubject
variability in cortical geometry in and around the calcarine fis-
sure, with primary visual cortex divided into subsulci and seldom
conforming to the canonical cruciform representations common
in textbooks (see e.g., Stensaas et al., 1974). As such, foveal stim-
ulation can lead to considerable variation in C1 topographies and
amplitudes across subjects, and this high variance needs to be
explicitly accounted for when assessing modulations of the C1
(see e.g., Kelly et al., 2008). In addition, it has also been shown
that modulation of the C1 component depends on high percep-
tual load of the visual attention task (Fu et al., 2009; Rauss et al.,
2009). Since there was only one distracter stimulus in the current
design, perceptual load may not have been sufficiently taxed.

Spatial and temporal attentional modulation
Attention cannot only be cued to spatial locations, objects, or
stimulus features, but also to temporal aspects of a task (i.e., when
it is that something is likely to occur). Several studies using tem-
poral cueing paradigms have examined temporal attentional
modulation in the fovea. While one study obtained no temporal
attentional modulation of the P1 component (Miniussi et al.,
1999), more recent studies have reported a larger P1 for foveated
stimuli appearing at attended moments (e.g., Correa et al., 2006).
Thus, as with spatial attention, temporal orienting can also mod-
ulate early processing at the center of gaze and an interesting
future question will be whether these two types of modulation are
governed by the same neural processes.

Attentional modulation in the fovea
Our study provides the first empirical evidence of attentional
gain modulation at the center of gaze. However it is not the first
study to show an influence of spatial attention on foveal process-
ing. Functional neuroimaging studies have shown attentional
modulation of BOLD response in brain areas representing the
foveal visual field. Due to the restrictions of fMRI, however, these
studies could not show the temporal dynamics of the attentional
modulation and thus could not ascertain whether it is due to
bottom-up or top-down processing (Logothetis, 2008). In addi-
tion, since some of these studies used periodic presentation of
stimuli or periodicities in the task, the hemodynamic signals
could have been influenced by an entrainment to experimental
structure (Sirotin and Das, 2009). Here we show that the atten-
tional modulation at the center of gaze occurs early (starting at
�80 ms) in extrastriate visual cortical areas, with the same latency
and cortical generators as previously described for peripheral
stimuli.
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