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ABSTRACT

The vast amount of music available electronically presents
considerable challenges for information retrieval. There is a need
to annotate music items with descriptors in order to facilitate
retrieval. In this paper we present a process for determining the
music genre of an item using a new set of descriptors. A Wavelet
Packet Transform is applied to obtain the signal representation at
different levels. Time and frequency features are extracted from
these levels taking into account the nature of music. Using round-
robin and one-against-all ensembles of simple -classifiers,
together with feature selection methods, we evaluate the best
signal representation for music genre classification. Ensembles
based on different feature sub-spaces are explored as well in order
to overcome over-fitting issues. Our evaluation shows that
Wavelet Packet analysis together with ensemble methods achieves
very good classification accuracy.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval — information filtering, search process.

General Terms
Algorithms, Design, Experimentation.

Keywords
Music information retrieval, Wavelet analysis, ensemble
techniques, features selection.

1. INTRODUCTION

In recent years, the interest of the research community in indexing
multimedia data for retrieval purposes has grown considerably
[1]. The requirement is to enable access to multimedia data with
the same ease as textual information. An example of this is the
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need to annotate music files with descriptors such as genre. This
kind of characterization becomes indispensable in scenarios where
enhanced browsing systems [2] allow users to inspect and select
items from huge databases. In this domain, musical-genres are
descriptors commonly used to catalog the increasing amounts of
music available [3] and are important for music information
retrieval.

Music information retrieval (MIR), as a research field, has two
main branches: symbolic MIR and audio MIR. A symbolic
representation of music such as MIDI describes items in a similar
way to a musical score. Attack, duration, volume, velocity and
instrument type of every single note are available information.
Therefore, it is possible to access statistical measures such as
tempo and mean key for each music item. Moreover, it is possible
to attach to each item high-level descriptors such as instrument
kind. On the other hand, audio MIR deals with real world signals
and any features need to be extracted through signal analysis. In
fact, extracting a symbolic representation from an arbitrary audio
signal (polyphonic transcription) is an open research problem,
solved only for simple examples. However, recent research shows
that it is possible to apply signal processing techniques to extract
features from audio files [1, 2] and derive reasonably sensible
classification by genre [5, 6]. Other important examples of signal
processing techniques applied to the audio domain involve
discrimination between speech and music [16]; tempo and beat
estimation [17]; audio retrieval by example [18].

This work presents a new approach for music genre classification.
A new set of features is accessed through a Wavelet Packet
Decomposition transform, a process that has not been fully
explored in the music domain (section 3). These new features are
used within the framework of a supervised classifier for
identifying genre. The paper discusses the performances of these
features within that system. Different ensembles of simple
classifiers (round-robin, one-against-all and feature sub-space
based ensemble) together with different feature selection
techniques are explored. Gain ratio and principle component
analysis based ranking techniques are explored in order to
overcome over-fitting issues. In section 5 we present an
evaluation of different signal representations with the objective of
determining the best descriptors for music genre classification.



2. WAVELET PACKET DECOMPOSITION

The discrete wavelet transform (DWT) is a well-known and
powerful methodology that expresses a signal at different scales in
time and frequency [4]. Taking into account the non-stationary
characteristic of real signals, the DWT provides good time and
frequency resolution. The discrete wavelet packet transform
(DWPT) [4] is a variant of the DWT technique. DWPT permits to
tile the frequency space in a discrete number of intervals. For
music analysis, this possibility has an enormous advantage: it
allows us to define a grid of Heisenberg boxes matching musical
octaves and musical notes. Considering just the frequencies
corresponding to the musical notes, the spectrum characterization
becomes a relatively easy task. DWPT is achieved by recursively
convolving the input signal with a pair of gquadrature mirror
filters g (low pass) and h (high pass). Unlike the DWT that
recursively decomposes only the low-pass sub-band, the DWPT
decomposes both sub-bands at each level. It is possible to
construct a tree (a wavelet packet tree) containing the signal
approximated at different resolutions. This is done using a
pyramidal algorithm [4].

3. FEATURE EXTRACTION

One disadvantage of using DWPT in this domain is that it is
impossible to define a unique decomposition level suitable for
time-feature and frequency-feature extraction. That depends on
the properties of FIR filters (like Haar or Daubechies wavelets).
Being able to recognize musical notes in the frequency domain
implies loosing almost all the details about onset and offset of
notes. Being able to recognize a note’s onset entails loosing details
about its frequency. This paper overcomes these problems by
proposing two different decomposition levels, one for time-feature
and one frequency-feature extraction.

3.1 Time Feature

In order to characterize the beat of a song, we define a set of
virtual instruments in the frequency domain. These virtual
instruments (frequency bins) correspond to different frequency
sub-bands (table 1) extracted with the DWPT. Table 1 also shows
in brackets the rough musical note range that corresponds to each
frequency span.

Table 1. Frequency bin definition for time-feature extraction

Frequency Interval Bin Numb.

0HZ (C0) 86 Hz (E2) 0
86 Hz (F2) 172 Hz (E3) 1
172 Hz (F3) 345 Hz (E4) 2
345 Hz (F4) 689 Hz (E5) 3
689 Hz (F5) 1378 Hz (E6) 4
1378 Hz (F6) 2756 Hz (E7) 5
2756 Hz (F7) 5513 Hz (E8) 6
5513 Hz (F8) 11111 Hz (E9) 7
11111 Hz (F9) 22050 Hz (>C10) 8
22050 Hz () 44100 Hz (-) 9

Using the DWPT the input music signal can be decomposed into
these sub-bands. Each sub-band is then characterized in the time

domain by measuring the range of beats that are found. The
overall algorithm is shown in figure 1.

In order to assure a time-resolution suitable for extracting
periodicities in music we have to take into account the properties
of the data and of the DWPT. Since the wavelets at any level j are
obtained by stretching and dilating the mother wavelet by a factor
2'[4], the time resolution at level ; is given by:
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where W;,, is the wavelet support and j is the decomposition level
of the DWPT.
The resolution in beat per minute (b.p.m.) at level j is given by:
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The factor 2 in the above formula has been introduced in order to
take into account the sampling theorem. Given music sampled at
44100 Hz, and using the Daubechies4 wavelet (Wsup = 8 taps), a
maximum resolution of 300 b.p.m., and using equations (1),(2); 9
levels of decomposition are necessary. *

Figure 1. Time-features extraction

The time-features are therefore extracted directly from the beat-
histogram [5] of the signal. It is calculated adding all the
periodicities found in each sub-band to the same graph. The



features are: the intensity, the position and the width of the
intensive peaks. The position of a peak is the frequency of a
‘dominant’ beat, the intensity refers to the number of times that
beat frequency is found in the song, the width corresponds to the
accuracy in the extraction procedure. The peak detection
algorithm uses the first derivate of the signal. Additional features
used are: the total number of peaks present in the histogram, the
histogram max and mean energy and the length in seconds of the
song.

The idea of the beat-histogram was proposed by G. Tzanetakis et
al. [5]. In their work, they demonstrate the usefulness of such a
characterization in music classification. The algorithm presented
here uses a different analysis methodology (DWPT) and few little
differences in the beat-histogram calculation. In this work we do
not define an a priori number of time features (namely the
number of peaks we extract from the beat-histogram). In section
5.1 we present the analysis we performed to determine the best
number of peaks needed for beat description.

3.2 Frequency Feature

The feature set we propose is directly calculated from the
frequency spectrum achieved via the DWPT. Given an input
signal sampled at 44100 Hz, the DWPT divides the frequency
axis between 0 Hz and 44100 Hz in 2’ intervals. It is possible to
demonstrate that 16 levels of decomposition are necessary in order
to have frequency bins matching music notes.

Table 2. Frequency bins definition for freq.-feature

extraction
Frequency Interval Bin Numb.

0HZ (C0) 33 Hz (BO) 0
33 Hz (Cl) 64 Hz (B1) 1
64 Hz (C2) 128 Hz (B2) 2
128 Hz (C3) 256 Hz (B3) 3
256 Hz (C4) 512 Hz (B4) 4
512 Hz (C5) 1025 Hz (B5) 5
1025 Hz (C6) 2048 Hz (B6) 6
2048 Hz (C7) 4096 Hz (B7) 7
4096 Hz (C8) 8192 Hz (BS8) 8
8192 Hz (C9) 16348 Hz (B9) 9
16348 Hz (C10) 32769 HZ (>C10) 10

Figure 2. Frequency-feature extraction

With such a resolution, we can propose a new set of frequency
features that takes into account some characteristics of music.
Being able to tell which notes are ‘dominant’ means having a way
to characterize the music harmony. Moreover, recording the note
intensity and position at every octave means estimating implicitly
the typology of playing instruments. The spectrum
characterization is performed considering frequency intervals
matching music octaves (table 2). Figure 2 shows the algorithm
for frequency-feature extraction.

Section 5.2 shows the analysis we performed to determine the
best number of frequency features (namely the number of peaks
extracted from each bin in table 2) in order characterize the
frequency spectrum.

4. CLASSIFICATION OF AUDIO SIGNALS
In this work different classifiers are explored in order to determine
the quality of the feature we propose. This is due to the fact that
the classification accuracy depends strongly on the technique
used. It is well known that different predictors behave differently
changing the nature of the problem being explored and the kind of
features taken as input. In this work we consider the A-NN
classifier as base predictor. Implementing a variety of ensemble
methods we consider the fact that different numbers and kinds of
features are tested. Moreover, in order to boost the accuracy of
each classifier (simple or ensemble) different feature selection
strategies are taken into account. In particular, we consider a
situation where we select the first » features based on one of the
ranking criteria. We also consider a wrapper-like [7, 11, 12]
forward sequential search that takes a ranked set of feature as
starting point. Since the wrapper approach is essentially a greedy
search in the feature space for the best feature mask, a key issue in
a forward sequential search is the order in which to test the
attributes. The ranking criteria we propose in this work are gain
ratio [8] and PCA [9].

4.1 k-NN based classifiers

k-NN classifiers are instance-based algorithms taking a
conceptually straightforward approach to approximating real or
discrete valued target functions. The learning process consists in
simply storing the presented data. All instances correspond to
points in an n-dimensional space and the nearest neighbors of a
given query are defined in terms of the standard Euclidean
distance [8]. The probability of a query ¢ belonging to a class ¢
can be calculated as follows:
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K is the set of nearest neighbors, kc the class of k and d(k,q) the
Euclidean distance of £ from g¢.

4.2 Round-robin ensemble

A RR ensemble converts a c-class problem into a series of two-
class problems by creating one classifier for each pair of classes
[10, 14]. New items are classified by submitting them to the c¢(c-
1)/2 binary predictors. The final prediction is achieved by



majority voting. The probability of a query ¢ belonging to a class
¢ can be calculated as follows:
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M is the set of ensemble members, mc is the class predicted by m
and pwm(clg) is the probability given by ensemble predictor m
according to equation (3).

4.3 One-against-all ensemble

An OAA ensemble performs problem-space decomposition with
each ensemble member trained on a re-labelled version of the
same data-set. Each component classifier is trained to
distinguishing between one single class and its complement in the
class space. Thus the number of members in the ensemble is equal
to the number of classes in the problem. The probability of a
query ¢ belonging to a class ¢ can be calculated as follows:

P(c|q) =arg IEaX[pm (cl)] (5)

M is the set of ensemble members and pn(c|g) is the probability
given by ensemble predictor m according to equation (3).

4.4 Feature sub-space ensemble

Sub-sampling the feature space and training a simple classifier for
each sub-space is an alternative methodology for building an
ensemble. This strategy differs completely from the OAA and RR
approaches. It does not decompose the decision space based on the
classification task. Instead, the strength of FSS depends on having
a variety of simple classifiers trained on different feature sub-sets
sampled form the original space. This approach is very similar to
a bagging technique [13] where the ensemble is built using
different subsets of the instances in the training data. In this work,
each ensemble member is trained on different feature-subsets of
predefined dimension. Each feature-subset is drawn randomly
from the original set. The probability of a query ¢ belonging to a
class ¢ can be calculated according to equation (4).

5. EVALUATION AND DISCUSSION

In this section we present a comparative analysis of the
performance of the different classifiers we presented in section 4.
As anticipated in section 3, the number of feature we extract from
the wavelet packet approximation of the signal is not a priori
defined. The signal analysis has been performed » times in order
to obtain different representations of the same database. Each
representation differs in the number of peaks taken in to account.
Through a comparative analysis of the classifier performances we
bound the number of time and frequency features.

All the classifiers are trained on the same dataset composed of 200
instances divided in 5 different musical genres (Jazz, Classical,
Rock, Heavy Metal and Techno), with 40 items in each genre.
Each item is sampled at 44100 Hz, mono. The songs have been
labeled manually using [3] as musical-genre reference. The
accuracy scores are obtained by running a stratified 10 fold cross
validation experiment. The number of k nearest neighbours is 5.

5.1 Bounding the number of time features
Figure 3 shows the accuracy behavior of a simple A-NN classifier
trained using only time-features. As the number of time features
used for representing the audio signal (namely the number of
peaks) increases, the accuracy decreases. Applying forward
sequential search based on the gain ratio measure, the score
stabilizes around 47% regardless of the number of time-feature.

Figure 4 shows how a round-robin ensemble performs on the
same experiment. While the accuracy behavior obtained without
feature selection is comparable with the one showed by the simple
k-NN, the ensemble outperforms the simple &~NN classifier once
the feature selection is applied. The round-robin ensemble score
keeps almost constant around 65%.
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Figure 3. Simple A-NN performance using time-features
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Figure 4. RR ensemble performance using time-features

In figure 5 we present the results of an identical experiment
conducted using a one-against-all ensemble as classifier. The
accuracy behaviour of such an ensemble reflects almost exactly
the one showed by the simple ~-NN when no feature selection is
applied. The small differences between the two behaviours depend
on how the ties are broken inside the ensemble. Applying the
feature selection, the accuracy jumps to 59.5% for 7 features. It is



interesting noting that the accuracy deteriorates abruptly when
more than 19 features are used for describing the beat-histogram.
This kind of behaviour depends on over-fitting due to lack of
diversity in the ensemble [15].

According to figure 3, 4 and 5 we choose the minimum number
of peaks necessary to characterize successfully the beat-
histogram. The 13 time features taken into account are: time
length; mean and max energy of the beat-histogram; total number
of peaks; position, intensity and width of the 3 most intensive
peaks.
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Figure 5. OAA ensemble performance using time-features

5.2 Bounding the number of freq. features

In order to restrict the number of features used to characterize the
signal, we perform a slightly different experiment. As figure 5
shows, a big problem arises when the number of features increases
(i.e. over-fitting). This problem is very common in classification
and regression tasks when the number of features and the number
of items becomes comparable. Since the number of frequency
feature we evaluate varies between 35 and 123, we applied a
principle component analysis and produced a simple A-NN
classifier using the new set of features.

Figure 6 shows the accuracy behaviour training the classifier with
5 different representations of the same database. Each point on the
graphs is obtained by running the classification algorithm
considering a pre-defined number of features. l.e. 13 features,
means that the classification is accomplished considering only the
13 best ranked features.

The accuracy curves obtained for the 5 different signal
representations show similar behaviors in the whole range of
ranked features taken into account. Considering the 5 best ranked
features the difference between the poorest description (35
features) and the richest (123 features) is 3%, scoring respectively
71% and 74%. Augmenting the number of ranked features, the
curves show similar noisy behavior.

In order to keep the frequency representation as simple as
possible, without loosing much information (Occam’s razor) we
characterize the frequency spectrum of the audio signal with 35
frequency features. They are: mean and max energy of the

spectrum and, for each frequency bin in table 2, position and
intensity of the most prominent peak plus the total number of
peaks in each bin.
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Figure 6. Accuracy curves of a simple k-NN for 5 different
signal representation. Only frequency features have been
taken into account.

5.3 Combining time and frequency features

In table 3 we show the accuracy of a simple &-NN classifier, a
round-robin ensemble and a one-against-all ensemble trained
using 48 time-frequency features. Columns 3 and 4 of table 3
show the classifier accuracies applying the full greedy search in
the feature space ranking the features according to gain ratio and
PCA.

Table 3. Prediction accuracies achieved through feature
selection, varying ranking procedure and classifier.

No FS FS (GR) | FS (PCA)
Simple A-NN 78.5% 70.5% 65.5%
RR Ensemble 78.0% 78.5% 72.5%
OAA Ensemble 78.0% 77.0% 64.0%

Table 3 shows that the 3 classifiers tend to overfit. Without
applying feature selection the accuracy score is higher than after
the greedy search. The only exception is the score of a round-robin
ensemble (column 3), but the achieved accuracy equals the simple
k-NN accuracy obtained without feature selection. This behavior
must be ascribed to a failure of the search for the best feature
subset.

In order to avoid over-fitting we performed an experiment similar
to the one presented in section 5.2. Each classifier has been trained
using a pre-defined number of features and the accuracy score
achieved trough a 10 fold-cross validation. The graph in figure 7
shows the accuracy curves obtained with the 3 different classifiers
ranking the features according to gain ratio or PCA (the ranking
strategy applied is given in brackets).

Considering the two ensembles (round-robin and one-against all),
the same number of features is selected in each ensemble
member. Selecting 10 features implies selecting the first 10 best



ranked features in a each simple predictor. The ranking procedure
is accomplished independently in each ensemble member. The
graph clearly demonstrates that a round-robin ensemble
outperforms the OAA ensemble and the simple &~NN classifier.
The RR ensemble scores 77.5% with 3 features, 80.0% with 9
features and 81.0% with 16 features.
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Figure 7. Accuracy achieved by 3 different classifiers ranking
the features using gain ratio and PCA.
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Figure 8. Accuracy achieved by a RR ensemble using
frequency features and time and frequency features together.

In figure 8 we present the results of a similar experiment
conducted using a round-robin ensemble trained with only
frequency features and both time and frequency features. The
graph demonstrates the usefulness of representing an audio signal
with both time and frequency features in terms of improved
accuracy.

5.4 An alternative ensemble method

In the previous subsections we demonstrated that representing a
collection of audio signal through 48 time-frequency features is a
successful approximation for music genre classification. However
our analysis points out that a greedy search in the feature space for
the best feature subset fails because of over-fitting problems. A

way to overcome this issue is to consider an ensemble constituted
by different small feature sub-spaces.

Figure 9 shows the accuracy curve of such an ensemble varying
the dimension of the sub-spaces. Each point on the graph is
obtained running 10 times a stratified 10 fold cross validation. The
number of nearest neighbours for each run is 11. The error in the
accuracy measure is = 1% (standard deviation). The dashed curve
represents the accuracy obtained implementing a forward
sequential search based on gain ratio. Even if the difference
between the two curves lies in the error bar, the feature selection
assures better performance throughout the explored dimensions. In
table 4 we present the confusion matrix obtained by the ensemble
with feature sub-space of dimension 5 (83.5%).
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Figure 9. Accuracy achieved by a feature sub-space ensemble
varying the sub-space dimension.

Table 4. Confusion matrix for a feature sub-set ensemble (e.g.
7 Rock tracks have been classified as Heavy Metal).

Q\A| Jazz | Rock | Techno | Classical | H. Metal
Jazz| 33 2 1 4 0
Rock| 2 27 2 2 7
Techno| 2 1 34 0 3
Classical| 0 0 0 40 0
H Metal 0 1 5 0 34

6. CONCLUSION AND FUTURE WORK

In this work we demonstrated that a Wavelet Packet analysis
combined with ensembles of simple predictors can successfully
classify a set of audio signals representing different music genres.
The experiment shows how to reduce the number of features
extracted from signal analysis in order to minimize over-fitting
issues. Combining the properties of different ensemble strategies
and feature selection methods, we showed that a feature set
counting 48 time-feature descriptors can be used to successfully
accomplish the genre classification. The analysis we performed
shows that a Round-robin ensemble outperforms a simple A-NN
classifier and a one-against-all ensemble considering only time-



features and considering both time and frequency features. Due to
the lack of music items in our database, the full greedy search in
the features space fails because of over-fitting. The feature sub-
space ensemble strategy seems to be the more appropriate solution
in this context, since the ratio between number of features and
number of instances can be easily controlled. However, over-
fitting issues will be only partially solved until a large database of
music items is available to the research community.

In the future we plan to evaluate other kind of ensembles together
with different basic classifiers. Moreover we plan to extend our
database. Another interesting aspect will be the consideration of
the hierarchical structure of music genres. Music genre and music
style [3] classification can be separately addressed in order to
simplify the representation of the problem space and hence
enhance the system performance.
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