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ABSTRACT

‘We consider the general problem of ob ject recogni-
tion based on a set of known templates, where the
available observations are noisy. While the set of
templates is known, the tremendous set of possi-
ble transformations and deformations between the
template and the observed signature, makes any de-
tection and recognition problem ill-defined unless
this variability is taken into account. We propose
a method that reduces the high dimensional prob-
lem of evaluating the orbit created by applying the
set of all possible transformations in the group to a
template, into a problem of analyzing a function in a
low dimensional Euclidian space. In this setting, the
problem of estimating the parametric model of the
deformation is transformed using a set on non-linear
operators into a set of equations which is solved by
a linear least squares solution in the low dimensional
Euclidian space. For the case where the signal to
noise ratio is high, and the non-linear operators are
polynomial compositions, a maximume-likelihood es-
timator is derived, as well.

1. INTRODUCTION

This paper is concerned with the general problem of auto-
matic object recognition based on a set of known templates,
where the available observations are noisy. While the set of
templates is known, the variability associated with the ob-
ject, such as its location and pose in the observed scene, or
its deformation, are unknown a-priori, and only the group
of actions causing this variability in the observation can
be defined. This huge variability in the object signature
(for any single object) due to the tremendous set of possi-
ble transformations and deformations between the template
and the observed signature, makes any detection and recog-
nition problem ill-defined unless this variability is taken into
account. In other words, estimation of the transformation
of the object with respect to any template in an indexed
set is an inherent and essential part of any detection and
recognition system. In this paper we address this difficult
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problem, through a derivation based on a group-theoretic
description of the problem, and an algorithmic solution that
employs the constraints the observed object and the tem-
plate must jointly satisfy.

The fundamental settings of the problem are provided
in [1]. There are two key elements in a deformable tem-
plate representation: A typical element (the template); and
a family of transformations and deformations which when
applied to the typical element produces other elements. The
family of deformations considered in this paper is ex termly
wide: we consider differentiable homeomorphisms having a
continuous and differentiable inverse, where the derivative
of the inverse is also continuous.

Thus each template is associated with its orbit, induced
by the group action on the template. Hence, given measure-
ments of an observed object (for example, in the form of an
image) recognition becomes the procedure of jointly finding
the group element and object template that minimize some
metric with respect to the observation. Theoretically, in
the absence of noise, the solution to the recognition prob-
lem is obtained by applying each of the deformations in
the group to the template, followed by comparing the re-
sult to the observed realization. However, as the number of
such possible deformations is infinite, this direct approach
is computationally prohibitive. Hence, more sophisticated
methods are essential. In addition to the huge variability
in the object signature due to the unknown deformations,
the observations are also noisy, in general. We analyze the
behavior of the proposed solution for estimating the de-
forming function in the presence of noise. The analysis and
the algorithmic solution enable a rigorous treatment of the
homeomorphism estimation problem in a wide range of ap-
plications.

The center of the proposed solution is a method that re-
duces the high dimensional problem of evaluating the orbit
created by applying the set of all possible homeomorphic
transformations in the group to the template, into a prob-
lem of analyzing a function in a low dimensional Euclidian
space. In general, an explicit modeling of the homeomor-
phisms group is impossible. We therefore choose to solve
this problem by focusing on subsets of the homeomorphisms
group which are also subsets of vector spaces. This may be
regarded as an approximation the homeomorphism using
polynomials, based on the denseness of the polynomials in
the space of continuous functions with compact support.
In this setting, the problem of estimating the parametric



model of the deformation is solved by a linear system of
equations in the low dimensional Euclidian space.

More specifically, consider the problem given by
h(z1,...,20) = g(@(z1,...,2n)) where ¢(z1,...,2n) =
($1(z1,.-.,2Zn)s- .., &n(x1,...,2Zn)). In the problem setting
considered here h and g are given while ¢ should be esti-
mated. In previous papers we analyzed this problem and
derived estimation algorithms of the deformation ¢, for the
case where the transformation is affine [2], and for the case
where ¢ is a homeomorphism with a differentiable and con-
tinuous inverse, [3]. We next briefly summarize the algorith-
mic solution for the problem of estimating the homeomor-
phic deformation in the absence of observation noise. To
simplify the notation and the accompanying discussion we
present the solution for the case where the observed signals
are one-dimensional. The derivation for higher dimensions
follows along similar lines.

2. PARAMETRIC MODELING AND
ESTIMATION HOMEOMORPHISMS WITH A
DIFFERENTIABLE AND CONTINUOUS
INVERSE

Let R be the one-dimensional Euclidean space, and let the
corresponding measure be the standard Lebesgue measure.
Consider the general case where h: X - Y andg: X — Y
are bounded and measurable functions with compact sup-
port X C R, and where Y C R, such that

h(z) = g(¢(x)) . (1)

In the following we assume that G is the group of differen-
tiable homeomorphisms such that each element of G has a
continuous and differentiable inverse, where the derivative
of the inverse is also continuous. Let C'(X) denote the set of
continuous real-valued functions of X onto itself, where the
norm is the standard L2 norm. By the above assumption
every ¢ ', (¢7") € C(X). Since C(X) is a normed sepa-
rable space, there exists a countable set of basis functions
{e;} C C(X), such that for every ¢ € G,

(@) (2) =) bies(x) . (2)

In other words, it is assumed that every element in the
group and its derivative can be represented as a convergent
series of basis functions of the separable space C(X). Our
goal then, is to obtain the expansion of ¢_1($) with respect
to the basis functions {e;(z)}. In practice, the series (2) is
replaced by a finite sum, i.e., we have 1 <7 < m.

Let z = ¢(z). Then ¢~(2) = x, and hence

(671 (2)dz = dz 3)

Let {wp},—1 : Y — R be a set of continuous functions
that separate the points of Y. Hence, these functions sep-
arate the points of the image of h (and g). As we show
next, these functions are employed to translate the identity
relation (1) into a set of P equations:

/oowp(h(m))dm = 7wp(g(¢(w)))dw

= o [ e@ulote)io
=1
p=1....,P(4)
Rewriting (4) in a matrix form we have
fwl oh
f wi;a oh
felwlog femwlog b1
: : : (3)
felwp0g femwpog bm

We thus have the following theorem:

Theorem: The homeomorphism ¢ satisfying the para-
metric model defined in (1) is uniquely determined iff the
matrix

fe1wlog femwlog

(6)

felwpog femeog

is full rank.

Thus, provided that {w,}:_; are chosen such that (6)
is full rank, the system (5) (in the absence of noise we take
P = m) can be solved for the parameter vector [b1, ..., bn].
It is clear that in the absence of noise, any set of functions
{wp}pty such that (6) is full rank is equally optimal. As
we show next the situation is remarkably different in the
presence of observation noise.

3. OBSERVATIONS SUBJECT TO ADDITIVE
NOISE: THE LEAST SQUARES SOLUTION

In the presence of noise the observed data is given by

h(z) = g(o(x)) + n(z) . (7)

Assuming that the noise has a zero mean, and that its
higher order statistics are known, we first address questions
related to issue of the optimal choice of the set {wp} for
each template function g. We begin by adapting the so-
Iution derived in the previous section for the deterministic
case, to a least squares solution for the model parameters.
In the presence of noise the basic equation (4) becomes

oo oo

/ wp(h(x))de = / wolg(6(x)) + n(w)]da

—00 —0o0

oo



where we define the random variable

¢ = / {wp[g<z>+n<¢—1<z>>1—wp<g<z>>}<¢—1>’<z>dz

—o0

/ {wp[g<¢<x>>+n<x>] wp<g<m)>}dm ©)

Substituting (2) into (8), we obtain the linear system of
equations

/ wplh(@)de = Y b / es(2)wplg(6(2))ds + €&

p=1,...,P (10)

The system (10) represents a linear regression problem where
the noise sequence {€}} is non-stationary since its statistical
moments depend on the choice of w, for each p. The re-
gressors are functions of w, and the template g, and hence
are deterministic. Provided that the sequence of compo-
sition functions {wp}gzl is chosen such that the resulting
regressors matrix is full rank, the system (10) is solved by
a linear least squares method such that the lo norm of the
noise vector is minimized.

The dependence of the noise sequence {€j} on the choice
of w, suggests that different choices of the composition se-
quence {wp}f::l may provide different solutions. We shall
be first interested in systems such that for each p, the linear
constraint imposed by w, is unbiased (and thus the “effec-
tive noise” that corresponds to each wy, is zero mean).

3.1. Construction of Unbiased Linear Constraints

Consider the case where we choose wp(z) = Zk aimk, and
the additive noise is white, Gaussian with zero mean and
variance o2. We next evaluate the mean term, E¢§, of the
“effective noise”, so that a correction term can be intro-
duced such that the non-zero-mean error term € in (9) is
replaced by a zero mean error term. To simplify the no-
tation we will take advantage of linear structure of wpy(x),
and analyze only the case where w,(xz) = z? and the gen-
eralization is straightforward. Thus, in this case

& = /{[9(2) +0(67 () — g (2)Ho 1) (2)dz

/ > (?)gp—j<z>nj<¢—1<z>><¢—1>'<z>dz (1)

Since the noise is Gaussian with zero mean, all terms in-
volving odd order moments of the noise vanish and hence

(%)
Be = Z(;)EW(W(Z))] / 9" (2)(¢7 1) (2)dz
=1 o
151 » . ) ‘
- Zbi = <2]>E[77 (o (2))] /QZF T(2)ei(z)dz  (12)

and E[n* (¢'(2))] is a constant which is a function of only
the index 2j of the even order moment, and of o2,

Hence, for the case where wy(z) = 2P, the zero-mean-
noise version of (10) becomes

(13)

where € is a zero mean random variable.

Thus the system (13) represents a different linear regres-
sion problem where the observation noise is non-stationary,
but with a zero mean. The regressors are functions of wy,
the template g, and the known statistics of the noise. Hence
the regressors are deterministic. Provided that the result-
ing regressors matrix is full rank, the system (13) is solved

P ~

by a linear least squares method such that szl |&g)? is

minimized.

4. ANALYSIS OF THE HIGH SNR CASE

In this section we analyze the proposed method assuming
wp(x) = zP, when it is assumed that the signal to noise
ratio is high.

To achieve improved numerical stability in the presence
of noise, in the following, we consider the normalized version
of the system (10), i.e.,

- / h? (z)dz

e [ el e lan
i [ gr(a)de

p=1,...,P (14)
Since h(z) = g(é(z)) + n(x) we have under the high SNR

assumption that the contribution of high noise powers can
be neglected, i.e.,

WP (x) = g" (é(x)) + p n(x)g"~ (¢(x)) (15)

Hence, the error term in (9) is approximated under the high
SNR assumption by

o = TL [ @15 ot
g¥(z)dz

. / n(@)g” (6(x))dz p=1,....P (16)



where we define ¢, = p/ [ ¢”(z)dz. Clearly, E[ej] =

—0o0
0, p=1,...,P. We next evaluate the error covariances
of the system, under the high SNR assumption. Let €Y =
[€,...,é5]", and T = E[e?(¢9)T]. Thus, the (k,1) element

of I is given by

Twy = CkCzE[/n(w)gk’l(Mw))dw/n(y)gl’l(ab(y))dy}

—0o0

(oo}

— ckclaz/gk+l_2(¢(a}))d;t

—oo

oo

- ckclﬁ/(qu(z))’g(z)k“*?dz

- ckclazzbi/ei(z)g(z)k+l_2dz (17)

Rewriting (17) in matrix form we have

r=0"Y b (18)

where

c? T ei(z)dz cicp T ei(2)g(z)F dz
u; = - : -

cicp 70 ei(z)dz c% 70 ei(2)g(z)*F 2dz

(19)

5. MAXIMUM LIKELIHOOD ESTIMATION OF
THE HOMEOMORPHISM

As we illustrate below, the LS algorithm for estimating the
homeomorphism parameters is accurate and computation-
ally simple as it requires only the solution of a set of linear
equations. In particular there is no need for an iterative
solution. Nevertheless, in cases where the performance of
this algorithm is not sufficient, it can serve to initialize the
more complex maximum likelihood estimator (MLE) of the
parameters, which we derive in this section.

Assuming the observation noise n(z) is Gaussian, we
have under the high SNR assumption that €Y is a zero mean
Gaussian random vector with covariance matrix I' given in
(18). Rewriting (10) in a matrix form, assuming the high
SNR assumption we have

h=Gb+é& (20)

where h = | T w1 (h(x))dz, ..., T wp(h(z))dz]T, and G

—oo —o0
(oo}

is a P x m matrix such that Gy, = [ ex(x)w[g(x)]dx.

—o0
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Figure 1: The deformation function and statistics of
the least-squares estimate. Clockwise from top-left:
The template and a noisy observation; The deform-
ing function (solid line)and the mean of its estimate
(dotted line); The bias in estimating the deformation
function; The mean squared error in estimating the
deformation function.

Hence the log-likelihood function for the observation vector
h is given by

logp(h;b) =
—% log(27) — %log(|I‘|) - %(h — Gb)"T ' (h— Gb) (21)

The MLE of the field parameters is found by maximizing
log p(h; b) with respect to the model parameters b. Since
this objective function is highly nonlinear in the problem
parameters, the maximization problem cannot be solved
analytically and we must resort to numerical methods. In
order to avoid the enormous computational burden of an
exhaustive search, we use the following two-step procedure.
In the first stage we obtain a suboptimal initial estimate for
the parameter vector b by using the algorithm described in
Section 3. In the second stage we refine these initial es-
timates by an iterative numerical maximization of the log
likelihood function. In our experiments we use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimiza-
tion method [4]. This algorithm requires evaluation of the
first derivative of the objective function at each iteration:

Ologp(y;b) 1 10T Tr—1
b = —5tr{Tl 76, }+GIT ™' (h - Gb)
+%(h - Gb)’'r! %I‘_l(h — Gb)” (22)

where b; is the ith element of b, G; denotes the ith column
of G, and

ar
59, — 0 W (23)




6. NUMERICAL EXAMPLES

In this section we present numerical examples to illustrate
the operation and performance of the proposed model, and
parameter estimation algorithm. In the first example we
consider the case where the template function is given by
g(z) = sin(mx) + 0.2sin(27z) — 0.3sin(37x) + 0.4sin(57x)
and the deformation is ¢(z) = 0.6z — 0.4z2 — 0.82> + 1.6z%.
The observed signal is h(z) = g(¢(z)) + n(z), where the
noise is normally distributed with zero mean and variance
of 0.04. The number of available samples of both the tem-
plate and the noisy observation is 10000, so that the ef-
fects of both integration errors as well as of low sampling
rates (and the resulting need for interpolating the data) are
negligible. We illustrate the performance of the proposed
solution using Monte Carlo simulations. The experimental
results are based on 500 independent realizations of the ob-
served signal. The estimator employed is the least-squares
estimator. The top-left plot of Fig. 1 shows the template
and a single noisy observation. The top-right plot shows
the deforming function and the mean value of its estimates.
The two plots on the bottom depict the bias and the mean
squared error in estimating the deformation as a function
of z (the deformation takes place along the z-axis).

The next example illustrates the operation of the pro-
posed algorithm on an image of a real object. The image
dimensions are 1170 x 1750. The top image in Figure 2
depicts the original image of the aircraft, which is also em-
ployed as the template. In order to be able to evaluate the
performance of the method the image of the object is then
deformed, and a zero mean Gaussian observation noise is
added — to obtain the simulated noisy observation of the
aircraft. See the middle image. The deforming function
(which takes place only along the z-axis) is depicted using
a solid line in Figure 3 along with the estimate (dotted line)
obtained by applying the proposed solution to the noisy ob-
servation shown in Figure 2. Finally, the estimated defor-
mation is applied to the original template in order to obtain
an estimate of the deformed object (lower image in Figure
2) which can be compared with the deformed noisy object
shown in the middle image.
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Figure 2: From top to bottom: Template;
Noisy observation on the deformed object;
Estimated deformed object
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Figure 3: The deformation function
and it estimates.



