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ABSTRACT

‘We consider the general problem of ob ject recogni-
tion based on a set of known templates. While the
set of templates is known, the tremendous set of
possible transformations and deformations between
the template and the observed signature, makes any
detection and recognition problem ill-defined unless
this variability is taken into account. We propose
a method that reduces the high dimensional prob-
lem of evaluating the orbit created by applying the
set of all possible transformations in the group to a
template, into a problem of analyzing a function in
a low dimensional Euclidian space. In this setting,
the problem of estimating the parametric model of
the affine deformation is expressed using a set on
non-linear operators, by a set of linear equations.
This system of linear equations is then solved for
the transformation parameters.

1. INTRODUCTION

This paper is concerned with the general problem of object
recognition based on a set of known templates. However,
while the set of templates is known, the variability associ-
ated with the object, such as its location and pose in the
observed scene, or its deformation are unknown a-priori,
and only the group of actions causing this variablity in the
observation, can be defined. This huge variability in the ob-
ject signature (for any single object) due to the tremendous
set of possible transformations and deformations between
the template and the observed signature, makes any de-
tection and recognition problem ill-defined unless this vari-
ablity is taken into account. In other words, estimation of
the transformation of the object with respect to any tem-
plate in an indexed set is an inherent and essential part of
any detection and recognition problem.

The fundamental settings of the problem known as de-
formable templates are set in [1] and the references therein.
There are two key elements in a deformable template rep-
resentation: A typical element (the template); and a family
of transformations and deformations which when applied
to the typical element produces other elements. In the sim-
plest case where rigid objects are observed the transfor-
mations are composed of translation, scaling and rotation.

This work was supported by the EU 5th Framework ITHP
Program, MOUMIR. Project, under Grant RTN-1999-0177.

The action of the transformation/deformation on the set
of known templates forms a group action on the space of
all possible transformed templates. Thus each template is
represented by its orbit, induced by the action of the group
on the template. For multiple objects, the transformation
space is best described as a union of orbits, each represent-
ing a different object and its possible deformations. Thus,
given measurements of an observed object (for example, in
the form of an image) recognition becomes the procedure of
jointly finding the group element and object template that
minimize some metric with respect to the observation.

To enable a rigorous treatment of the problem we begin
by defining the “similarity criterion”. Let G be a group and
S be a set (a function space in our case), such that G acts as
a transformation group on S. We define a geometry on the
function space S, and an affine group GG, where the action
of G on S is defined by G xS — S such that for every ¢ € G
and every s € S, (¢,8) — so ¢ (composition of functions
on the right), where s o ¢ € S. From this point of view,
given two functions A and g on the same orbit, the initial
task (that enables recognition in a second stage), is to find
the element ¢ in G that makes h and g similar in the sense
that h = g o ¢. To simplify the discussion, at this stage
we exclude the case of self-similar functions, i.e., functions
f € S for which there exists some ¢ € G such that ¢ is not
the identity element while f = f o ¢.

To better illustrate the approach consider the following
examples:

1. 81 ={f: R — R|f measureable and bounded}, G1 =
{¢: R— Rlo(x) =ax+b, a#0}.
In this setting the objects are measurable and bounded
functions from the real line to itself and the group
is the group of linear non-singular transformations.
(Non-singularity is essential for having the structure
of a group). Let s be an object in S1. The group ac-
tion defined by 1 implies that the only transforma-
tions s can undergo are uniform scaling of its x-axis
and shift. Consider now the entire family {s o p|p € G1}
which is the family of functions induced by the single
object s (the orbit). Thus, given some other element
in this family we would like to know the parameters
of its transformation relative to s. If a time depen-
dent sequence is provided, we would like to track the
object evolvement as a function of time.

2. S3= {f : R — R|f measureable and bounded}7 Gs =
{¢:R* = R*|p € SOs(R)}.



This is one of the simplest examples when two-dimensional

domains are being considered. In this example the
group action model only allows the objects to be
rotated or translated from their “original” position.
Thus the objects in this framework are all “rigid”.

The above setting enables us to formalize practical ques-
tions using a rigorous setting:

1. Motion Analysis: Is the problem of estimating the
group action as a function of time so that at each
instant the correct group element that acts on the
object is identified. (In some cases it is possible to
add topological structure to the group or even an ana-
lytic structure (Lie groups) that enables the tracking
of continuous or differentiable motions.)

2. Detection and Recognition: Is the task of finding the
equivalence class of the given object, thus identifying
the orbit associated with this object.

In this paper we concentrate on the analysis of para-
metric modeling and estimation of affine transformations.
(This problem is a special case of the general problem of
modeling the homeomorphisms group). Theoretically, in
the absence of noise, the solution to the recognition prob-
lem is obtained by applying each of the deformations in the
group to the template, followed by comparing the result to
the observed realization. In the absence of noise, one of
the deformations is identical to the observation. Thus the
procedure of searching for the deformation that transforms
g into h is achieved in principle by a mapping from the
group (the affine group, in our case) to the space of func-
tions defined by the orbit of g. However, as the number of
such possible deformations is infinite, this direct approach
is computationally prohibitive. Hence, more sophisticated
methods are essential.

The center of the proposed solution is a method to re-
duce the high dimensional problem of evaluating the orbit
created by applying the set of transformations in GL(n)
into a problem of analyzing a function in the vector space
R™. In this paper we prove that the proposed approach
leads to an exact, closed form solution for the problem of
estimating the affine transformation.

2. THE AFFINE TRANSFORMATION

We begin by defining the geometry of the transformation for
the case where the transformed objects are two-dimensional.
Extensions to the n-dimensional case are immediate, as we
show throughout. More specifically, let D be a compact sub-
set of R X R and let f: D — R be an integrable function.
Let also GL2(R) denote the group of real valued invertible
2x2 matrices. Let A be some matrix in GL2(R) and let s be
a two-dimensional vector representing the shift operation.
Applying the transformation A to every (z,y) € D followed
by shifting the result by s, defines a new compact subset of
R x R, that we denote by D 4. Figure 1 illustrates the result
of applying such a transformation, with s = 0, to the basis
vectors [1,0]7,[0,1]7, and the result of applying the affine
transformation A to D, where the transformed basis vectors
are now given by [ai1, agﬂT, [a12, agg]T, respectively.

In the following we will be interested in obtaining the
representation of the “surface shape” f(z,y),(z,y) € D
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Figure 1: Two-dimensional affine transformation.
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in the orthogonal coordinate system defined on D4. In
the orthogonal coordinate system defined on D4 the same
surface is described by the function g : Da — R. Thus,
g(@',y") = glanz+ a2y +s1, a210+ a2y + s2) = f(,9), or
more generally, g(z’,7y') = f(A7'[x’ —§]). To simplify the
notations we shall assume without limiting the generality
of the derivation that s’ = 0. In this paper we consider the
problem of estimating A given the observations on g(z’,y")

and f(z,y).

3. PROBLEM DEFINITION

The general problem addressed in this paper is the follow-
ing: Given two bounded measurable functions h, g with
compact support, and with no affine symmetry (as rigor-
ously defined below), such that

h:R" - R
g:R"—> R
where
h(x) = g(Ax), A€ GLn(R), x€R" (1)

find the matrix A. We note that both h and g are defined
on spaces of the same dimension, 4.e., no projection into a
lower dimensional space is involved.

Let M(R", R) denote the space of measurable functions
from R" to R, and let x denote a vector in R"™. Let N C M
denote the set of measurable functions with an affine sym-
metry (or affine invariance), i.e., N = {f € M(R", R)|3A €
GLn(R),A #1, f(x) = f(Ax)} for every x € R". (Thus,
N is the “stabilizer” of M(R"™, R) under GL,(R). Obvi-
ously for any f € N and A such that f(x) = f(Ax) for
every x € R", A cannot be uniquely recovered).

To illustrate the notion of N consider the following ex-
ample: Let

1 zepr2"+2v Y Vnez
flz) = { 0 else



This function satisfies the relation f(z) = f(2x) but clearly
there is no hope to make any distinction between f(Aiz) =
f(2A1z) YA1 € R. Hence, f € N.

Other examples of affine invariant functions include any
constant function defined on all of R™; any periodic function
defined on all of R"™; and in the two dimensional case, the
functions with radial symmetry (as SO2(R) C GL2(R)).

Let Mass(R", R) £ M(R",R)\ N denote the set of
measurable functions with no affine symmetry. Next, parti-
tion M4s¢(R™, R) into affine equivalence sets by the equiv-
alence relation f ~ g & JA € GLn(R)| f(x) = g(Ax).
(It can be easily checked that this is indeed an equivalence
relation). Denote the quotient space by Qass(R™, R), and
let [f] denote the equivalence set of f.

Lemma 1 Let g € Mass(R", R). Assume f(x)= g(Ax).
Then the transformation A € GLn(R) satisfying the rela-
tion f(z) = g(Ax), is unique.

We can now rigorously formalize the scope of the prob-
lem addressed in this paper as follows: We provide an ezact,
closed form solution to the problem of estimating the affine
transformation A € GL,(R) for any two objects f and g
that satisfy an affine relation, i.e., [f] = [g] = ¢, for any
q € Qasf(R",R). An equivalent statement of the estima-
tion problem is as follows: Given two functions h and g
such that

h(x) = g(Ax) A € GL.(R) (2)

find A.

Finally, we note that in the following derivation it is
assumed that the functions are bounded and have compact
support (as they are measurable but not necessarily con-
tinuous). It is further assumed that A € GL,(R) has a
positive determinant.

4. AN ALGORITHMIC SOLUTION

In this section we provide a constructive proof showing that
given an observation on h(x) and an observation on g(x),
A can be uniquely estimated. It is further shown how this
estimator is implemented.
Let x,y € R", i.e.,
X = [z1,Z9,..., 25"

T
y=1[y,vy2,.. ., Yn]

where
y:Ax,x:A_ly
and
a1l - Qe qin -+ gin
A= ATl =
An1 - Gnn Gn1 ' Gnn

Since A € GLy(R), also A™! € GL,(R). Tt is therefore
possible to solve for A~ and the solution for A is guar-
anteed to be in GL,(R). Moreover, as shown below, in
the proposed procedure the transformation determinant is
evaluated first, and by a different procedure than the one

employed to estimate the elements of A~'. Hence, a non-
zero estimate of the Jacobian guarantees the existence of
an inverse of the transformation matrix. More specifically,
let

h.g,f:R"— R

and define the notation

/f:/“'/fdwldm"-dwn
R

R™ R

The first step in the solution is to find the determinant
of the matrix A. A simple approach is to evaluate the
Jacobian through the identity relation:

[re= [Fao=|a7] [ @

Rn Rn Rn

or through similar identities. (The specific choice made in
(3) is motivated by the convenience of handling functions
in Lo.) Hence,

J h(x)

Al =8 4
} | f 72(x) (4)
R’H.
and |A*1} = |A|"'. In the second stage, n linear and
independent constrains on the matrix elements must be set.
More specifically, let (A™1)) denote the kth row of (A™1).
We then have

oeh(x) = [ og(Ax) =AY [ (A7 )ey)g(y)
[ =] /
— ATy / yia(y) (5)
=1 pn

To solve for {qr;}i 1, more constrains must be added. To-
wards this goal, apply the family of left-hand compositions
{wp} : R — R to the known relation h(x) = g(Ax), to yield

w; 0 h(x) = w; 0 g(Ax) (6)

Integrating over both sides of the equality in (6), similarly
to (5) we obtain the system

J yi(wiog(y)) J yn(wi0g(y))

R™ R™ qk1

[ (w0 g(y))

.f Yn(wn 0 g(y)) o
Rn Rn
|Al [ k(w1 o h(x))
R’Il

=1 (7)
Al | @k (wn o h(x))

Rn

Similar system of equations is solved for each k£ to obtain
the entire matrix A™! and thus A itself.
We have just proved he following theorem:



Theorem 1 Let A € GL,(R). Assume the h and g are
measurable and bounded functions in May;(R", R) such that
h(x) = g(Ax). Then given measurements of h and g, A can
be uniquely determined if there exists a set of continuous
function {wp}p—1 such that the matriz

Jyiwiog(y)) - [ yn(wiog(y))

R R"

: . (8)
f yi(wnog(y)) -~ f Yn(wn 0 g(y))

Rn R™

is full rank.

Remark: Note that the solution for A employs only
zero (the Jacobian) and first order constraints (obtained by
multiplying wy o h by zx) and avoids the use of higher order
moments. However, imposing such a restriction (which is
clearly convienient due to its simplicity) may result in cases
where a system of the type (8) does not exist. It is then
obvious that higher order moments are needed to obtain a
system similar to (8) (yet nonlinear) with enough equations
to solve for all the unknowns.

5. NUMERICAL EXAMPLES

In this section we present a numerical example to illustrate
the operation and performance of the proposed model, and
parameter estimation algorithm.

The example illustrates the operation of the proposed
algorithm on an image of a real object. The image dimen-
sions are 1170 x 1750. The top image in Figure 2 depicts the
original image of the aircraft, which is also employed as the
template. In order to be able to evaluate the performance
of the method the image of the object is then deformed to
obtain the simulated deformed observation of the aircraft.
See the middle image. The deforming affine transformation

is given by
0.7 0.3
A= ( 0.2 0.8 >

where the estimate obtained by the proposed procedure,

A— 0.7023  0.2974
—\ 0.2018 0.7982

Finally, the estimated deformation is applied to the original
template in order to obtain an estimate of the deformed
object (lower image in Figure 2) which can be compared
with the deformed object shown in the middle image.
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Figure 2: From top to bottom: Template; Observation
on the deformed object; Estimated deformed object
obtained by applying the deformation estimated from
the observation to the template.



